階差数列(数B) - 質問解決D.B.(データベース)

階差数列(数B)

問題文全文(内容文):
次の数列{$a_n$}の一般項を求めよ。
$\begin{array}{c|c|c|c|c|c|c|c}
① & ② & ③ & ④ & ⑤ & ⑥ & … & n \\
\hline
3 & 5 & 9 & 15 & 23 & & … & ?
\end{array}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
次の数列{$a_n$}の一般項を求めよ。
$\begin{array}{c|c|c|c|c|c|c|c}
① & ② & ③ & ④ & ⑤ & ⑥ & … & n \\
\hline
3 & 5 & 9 & 15 & 23 & & … & ?
\end{array}$
投稿日:2019.12.04

<関連動画>

2023昭和大(医)漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=4$
$\displaystyle \sum_{k=1}^{n+1} a_k=4,a_n+8$
一般項$a_n$を求めよ.

昭和大(医)過去問
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

【数B】【数列】自然数の式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る 

福田の数学〜東北大学2025理系第2問〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の実数からなる$2$つの数列$\{x_n\},\{y_n\}$を

次のように定める。

$x_1=2,y_1=\dfrac{1}{2},x_{n+1}=(y_n)^5・(y_n)^2,$

$ \hspace{ 80pt } y_{n+1}=x_n・(y_n)^6$

このとき、以下の問いに答えよ。

(1)$k$を実数とする。

$a_n=\log_2 x_n,b_n=\log_2 y_n$とおく。

このとき、$\{a_n+kb_n\}$が等位数列になるような

$k$の値をすべて求めよ。

(2)数列$\{x_n\}$の一般項を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 
PAGE TOP