問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)座標空間内に3点A(2,0,0),\ B(0,4,0),\ C(0,0,8)をとる。\hspace{34pt}\\
2つのベクトル\overrightarrow{ AP }と\overrightarrow{ BP }+\overrightarrow{ CP }の内積が0となるような点P(x,y,z)\\
のうち、|\overrightarrow{ AP }|が最大となる点Pの座標を求めよ。\hspace{71pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (1)座標空間内に3点A(2,0,0),\ B(0,4,0),\ C(0,0,8)をとる。\hspace{34pt}\\
2つのベクトル\overrightarrow{ AP }と\overrightarrow{ BP }+\overrightarrow{ CP }の内積が0となるような点P(x,y,z)\\
のうち、|\overrightarrow{ AP }|が最大となる点Pの座標を求めよ。\hspace{71pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)座標空間内に3点A(2,0,0),\ B(0,4,0),\ C(0,0,8)をとる。\hspace{34pt}\\
2つのベクトル\overrightarrow{ AP }と\overrightarrow{ BP }+\overrightarrow{ CP }の内積が0となるような点P(x,y,z)\\
のうち、|\overrightarrow{ AP }|が最大となる点Pの座標を求めよ。\hspace{71pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (1)座標空間内に3点A(2,0,0),\ B(0,4,0),\ C(0,0,8)をとる。\hspace{34pt}\\
2つのベクトル\overrightarrow{ AP }と\overrightarrow{ BP }+\overrightarrow{ CP }の内積が0となるような点P(x,y,z)\\
のうち、|\overrightarrow{ AP }|が最大となる点Pの座標を求めよ。\hspace{71pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
投稿日:2022.08.08