大学入試問題#149 岩手大学(2019) 定積分 - 質問解決D.B.(データベース)

大学入試問題#149 岩手大学(2019) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{3}\displaystyle \frac{x}{(4-x)^3}\ dx$を計算せよ。

出典:2019年岩手大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3}\displaystyle \frac{x}{(4-x)^3}\ dx$を計算せよ。

出典:2019年岩手大学 入試問題
投稿日:2022.03.23

<関連動画>

積分による面積計算の公式①【6分の1公式】#shorts

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
積分による面積計算の公式①に関して解説していきます.
この動画を見る 

大学入試問題#211 宮崎大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
この動画を見る 

大学入試問題#321 甲南大学(2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#甲南大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^2(1-x)^2}{1+x^2}dx$

出典:2021年甲南大学 入試問題
この動画を見る 

福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数$m,n$に対して、
$A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx$
とおく。
(1)$e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1$ を証明せよ。
(2)各$m$に対して、$b_m=\lim_{n \to \infty}A(m,n)$ を求めよ。
(3)各$n$に対して、$c_n=\lim_{m \to \infty}A(m,n)$ を求めよ。

2022千葉大学理系過去問
この動画を見る 

大学入試問題#1 早稲田大学(2021) 微積の応用

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 
PAGE TOP