最短経路 他の問題もあり - 質問解決D.B.(データベース)

最短経路 他の問題もあり

問題文全文(内容文):
最短経路
AからBまで最短距離で行く。
(1)全部で何通り?
(2)Dを通らない場合は何通り?
(3)Eを通らない場合は何通り?
(4)CもDも通る場合は何通り?
(5)CもDも通らない場合は何通り?
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
最短経路
AからBまで最短距離で行く。
(1)全部で何通り?
(2)Dを通らない場合は何通り?
(3)Eを通らない場合は何通り?
(4)CもDも通る場合は何通り?
(5)CもDも通らない場合は何通り?
投稿日:2021.05.22

<関連動画>

福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。

2023一橋大学文系過去問
この動画を見る 

福田の数学〜千葉大学2022年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円周を12等分するように点$A_1,A_2,A_3,\ldots,A_{12}$が時計回りに並んでいる。
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって
12個の点上を移動させる。
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。
取り出した球は袋に戻さないこととする。
Pを最初に点 $A_1$に置く。操作を1回行い、Pが$A_1$から移動した点をQとおく。
続けて操作を1回行い、PがQから移動した点をRとおく。
もう一度操作を行い、 PがRから移動した点をSとおく。
(1) $R=A_1$となる確率を求めよ。
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。

2022千葉大学理系過去問
この動画を見る 

大阪大 確率 3次式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について

(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?

(2)
$f(x)$が極大値・極小値もとる確率は?

出典:2012年大阪大学 過去問
この動画を見る 

福田の数学〜複雑な条件付き確率に挑戦しよう〜慶應義塾大学2023年経済学部第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]袋の中に、 1 から 9 までの数字を重複なく 1 つずっ記入したカ ー ドが 9 枚入ている。この袋からカ ー ドを 1 枚引き、カ ー ドに記入された数字を記録してから袋に戻すことを試行という。この試行を 5 回繰り返し行う。また、以下の (a), (b) に従い、各回の試行後の点数を定める。ただし、 1 回目の試行前の点数は 0 点とする。
(a) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いていない場合は、その回の試行前の点数にその回の試行で記録した数字を加える。
(b) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いている場合は、その回の試行前の点数にその回の試行で記録した数字を加え、さらに 1000 点を加える。

(1)3回の試行後の点数は23点であった。それまでに引いた3枚のカードに記入された数字は、小さい順に$\fbox{ア},\fbox{イ},\fbox{ウ}$である。これら3つの数字の文さんは$\dfrac{\fbox{エオ}}{\fbox{カ}}$である。
(2)4 回の試行後の点数が 23 点となる確率は$\dfrac{\fbox{キ}}{\fbox{クケコ}}$である。
(3)2 回の試行後の点数が 8 点または 1008点となる確率は$\dfrac{\fbox{サ}}{\fbox{シス}}$である。
(4)2 回の試行後の点数が 8 点または 1008 点であるとき、 5 回の試行後の点数が 2023 点となる条件付き確率は$\dfrac{\fbox{セソ}}{\fbox{タチツテ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

サイコロ3個目の積が10の倍数になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロ3個の目の積が5と10の倍数になる確率をそれぞれ求めよ.

福島大過去問
この動画を見る 
PAGE TOP