大学入試問題#147 三重大学(2020) 積分の応用 - 質問解決D.B.(データベース)

大学入試問題#147 三重大学(2020) 積分の応用

問題文全文(内容文):
(1)
$x \geqq 1$のとき
$x \geqq 1+log\ x$を示せ


(2)
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{1+log\ x}dx \geqq \displaystyle \frac{1}{2}$を示せ

出典:2020年三重大学 入試問題
チャプター:

04:25~ 解答のみ掲載

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$x \geqq 1$のとき
$x \geqq 1+log\ x$を示せ


(2)
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{1+log\ x}dx \geqq \displaystyle \frac{1}{2}$を示せ

出典:2020年三重大学 入試問題
投稿日:2022.03.21

<関連動画>

【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 2 }1\lt a \lt 2$を満たす実数$a$について、$S(a)=\int_1^2 {|log(1+x)-logax|} dx$とするとき、次の問いに答えよ。ただし、logは自然対数である。
(1)$a$の値に応じて、$1\leqq x \leqq 2$の範囲で方程式$log(1+x)-logax=0$の解の個数を調べよ。
(2)$S(a)$を求めよ。
(3)$S(a)(1 \lt a \lt 2)$の最小値と、そのときの$a$の値を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題5 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$の最大値、最小値を求めよ。
(1) $\displaystyle f(x)=\int_0^x(1+2\cos t)\sin t~dt~~(0\leqq x\leqq2\pi)$
(2) $\displaystyle f(x)=\int_1^x(2-t)\log t~dt~~(1\leqq x\leqq e)$
この動画を見る 

【誘導あり:概要欄】大学入試問題#357「この大問は落とせないかな~~」 横浜国立大学2010 #定積分 #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt x \lt \pi$のとき
$\sin\ x-x\cos\ x \gt 0$を示せ

(2)
$0 \lt a \lt 1$
$I=\displaystyle \int_{0}^{\pi} |\sin\ x-ax| dx$を最小にする$a$の値を求めよ。

出典:2010年横浜国立大学 入試問題
この動画を見る 

数学IIIのこの問題、解けるかな?

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
以下を満たすf(x)は?
f(x)=8x+2∫f(t)dt
この動画を見る 
PAGE TOP