必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$

(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$

(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
投稿日:2020.11.01

<関連動画>

福田の数学〜早稲田大学2024商学部第1問(1)〜絶対値の付いた式の不等式を解く

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
不等式 $\displaystyle |\frac{2024n}{1 - 46n} + 44| < \frac{1}{2025}$ を満たす正の整数 $n$ の最小値を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。

2022早稲田大学理工学部過去問
この動画を見る 

【数Ⅰ】中高一貫校問題集3(数式・関数編)34:数と式:因数分解:次の式を因数分解せよ。6x²+17ax+12a²

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
6x²+17ax+12a²
この動画を見る 

【数Ⅰ】図形と計量:三角比への応用:「角の二等分線」の長さの求め方!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$AB=2,AC=3,A=60°$とし,$∠A$の二等分線と辺$BC$の交点を$D$とする。線分$AD$の長さを求めよ。
この動画を見る 

【理解度が試される…!】平方根:同志社高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\frac{(1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})}{\sqrt{(-2)^2}}$
この動画を見る 
PAGE TOP