問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
投稿日:2023.11.22