大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分 - 質問解決D.B.(データベース)

大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分

問題文全文(内容文):
$\theta$は$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$かつ$\tan\theta=2$を満たすとする。
$\displaystyle \int_{\frac{\pi}{4}}^{\theta} \displaystyle \frac{dx}{\sin^4x}$

出典:2004年東京慈恵医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\theta$は$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$かつ$\tan\theta=2$を満たすとする。
$\displaystyle \int_{\frac{\pi}{4}}^{\theta} \displaystyle \frac{dx}{\sin^4x}$

出典:2004年東京慈恵医科大学 入試問題
投稿日:2024.02.10

<関連動画>

#岩手大学(2019) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{3x^2-1}{2x+1}\sin\displaystyle \frac{2}{x}$

出典:2019年岩手大学
この動画を見る 

#関西大学2024 #方程式_70

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$x^2+x-\dfrac{2}{x}+\dfrac{4}{x^2}-6=0$
の解のうち最小のものを求めよ.

2024関西大学過去問題
この動画を見る 

大学入試問題#707「たぶん良問だと思う」 佐賀大学(2013) 方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: ますただ
問題文全文(内容文):
$x+\displaystyle \frac{1}{x}=\displaystyle \frac{y}{8}+\displaystyle \frac{8}{y}=\displaystyle \frac{x}{y}+\displaystyle \frac{y}{x}$をみたす実数$x,y$の組をすべて求めよ

出典:2013年佐賀大学 入試問題
この動画を見る 

数学「大学入試良問集」【16−4 複素数平面と軌跡・領域】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
この動画を見る 

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 
PAGE TOP