お茶の水女子大 微分積分 絶対値のついた2次関数 面積 - 質問解決D.B.(データベース)

お茶の水女子大 微分積分 絶対値のついた2次関数 面積

問題文全文(内容文):
(1)
$f(x)=|x^2-4x+3|$
$g(x)=ax(a \gt 0)$
$f(x)$と$g(x)$が4つの共有点をもつ$a$の範囲

(2)
次の不等式の表す領域の面積
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq |x^2-4x+3 \\
y \leqq x
\end{array}
\right.
\end{eqnarray}$

出典:2009年お茶の水女子大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=|x^2-4x+3|$
$g(x)=ax(a \gt 0)$
$f(x)$と$g(x)$が4つの共有点をもつ$a$の範囲

(2)
次の不等式の表す領域の面積
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq |x^2-4x+3 \\
y \leqq x
\end{array}
\right.
\end{eqnarray}$

出典:2009年お茶の水女子大学 過去問
投稿日:2019.06.22

<関連動画>

【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+4$は、どのように平行移動すると放物線$y=x^2+2x-1$に重なるか。
この動画を見る 

灘高校 因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a(x+2y)+b(x+3y)=-x+y$となるa,bを求めよ.
$x^2+5xy+6y^2-x+y+k$は$k=\Box$のとき,$\Box$と1次式×1次式に因数分解できる.
これを解け.

灘高校過去問
この動画を見る 

🌈🌈🌈

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
緑と青と赤の面積は等しい
AQ=?
*図は動画内参照
この動画を見る 

2023高校入試解説40問目 球の切り口 早稲田実業(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
3点P,Q,Rを通る平面で球Oを切ったとき、切り口の円の半径=?
*3点P,Q,Rは、AHを直径とする球面上
*図は動画内参照

2023早稲田実業学校
この動画を見る 
PAGE TOP