福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積

問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
投稿日:2023.08.20

<関連動画>

【数Ⅱ】円を表す方程式【図形と方程式の関係】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: めいちゃんねる
問題文全文(内容文):
円を表す方程式を求めよ.
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
この動画を見る 

#13数検1級1次過去問 複素関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
この動画を見る 

4次方程式の解と係数の関係?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+2x^3+3x^2+4x+1=0$の4つの解を
$α,β,γ,δ$とおくとき,
$(α^4-1)(β^4-1)(γ^4-1)(δ^4-1)$の値を求めよ.
この動画を見る 

絶対に落としたくない問題です【自治医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
この動画を見る 
PAGE TOP