福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積

問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
投稿日:2023.08.20

<関連動画>

【高校数学】 数Ⅱ-152 関数の極値②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の極値を求めて、そのグラフをかこう。

①$y =x^3+6x^2+12x+5$

②$y=x^4-6x^2+2$
この動画を見る 

千葉大2002

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$\log_2 n$が整数でない有理数となることを調べよ.

千葉大過去問
この動画を見る 

【数Ⅱ】微分法と積分法:偶関数・奇関数の性質の利用!知っているか知らないかで、差がつきますよ!!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の性質を利用すると、定積分の計算が簡単になる!?なぜそうなるか、グラフのイメージと共に解説します!
この動画を見る 

【高校数学】 数Ⅱ-44 剰余の定理と因数定理③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+ax+b$が、$x+1$で割ると1余り、$x-1$で割ると3余るとき定数a,bの値を求めよう。

②整式$P(x)$を$x-1$で割ると3余り、$2x+1$で割ると4余る。$P(x)$を$(x-1)(2x+1)$で割ったときの余りを求めよう。
この動画を見る 

【数Ⅰ】数と式:指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(1)$a^2\times a^3$
(2)$(a^2)^3$
(3)$(a^2b)^3$
(4)$(-2ab^2x^3)\times(-3a^2b)^3$
この動画を見る 
PAGE TOP