大学入試問題#38 日本大学(2021) 三角関数 - 質問解決D.B.(データベース)

大学入試問題#38 日本大学(2021) 三角関数

問題文全文(内容文):
$0 \leqq \theta \leqq \displaystyle \frac{5}{6}\pi$において
方程式
$3\sin(\theta+\displaystyle \frac{\pi}{3})+5\ \cos(\theta-\displaystyle \frac{\pi}{6})=0$を解け。

出典:2021年日本大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \leqq \displaystyle \frac{5}{6}\pi$において
方程式
$3\sin(\theta+\displaystyle \frac{\pi}{3})+5\ \cos(\theta-\displaystyle \frac{\pi}{6})=0$を解け。

出典:2021年日本大学 入試問題
投稿日:2021.10.21

<関連動画>

名古屋市立 式の値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?

出典:2012年名古屋市立大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。

2017大阪大学理系過去問
この動画を見る 

大学入試問題#919「昔は落ち着いた問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。

出典:一橋大(1960)
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#複素数平面#数列#平面上のベクトルと内積#漸化式#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$

$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$

$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$

$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$

$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$

$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$

$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$

$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
この動画を見る 

解を出さなくても解ける! 難関高校受験するのなら絶対に知って欲しい 解と〇〇の関係 明大明治

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-4x+1=0$の2つの解をa,bとするとき
$a^{10}b^8 + a^6b^8 - 3a^5b^5 =?$

明治大学付属明治高等学校
この動画を見る 
PAGE TOP