数学「大学入試良問集」【4−2 同じものを含む順列】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【4−2 同じものを含む順列】を宇宙一わかりやすく

問題文全文(内容文):
$a,a,b,b,c,d,e,f$の8文字をすべて並べて文字列をつくる。
文字$a$と文字$e$は母音字である。
(1)文字列は全部で何通りあるか。
(2)同じ文字が連続して並ばない文字列は何通りできるか。
(3)母音字が3つ連続して並ぶ文字列は何通りできるか。
(4)母音字が連続して並ばない文字列は何通りできるか。
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a,a,b,b,c,d,e,f$の8文字をすべて並べて文字列をつくる。
文字$a$と文字$e$は母音字である。
(1)文字列は全部で何通りあるか。
(2)同じ文字が連続して並ばない文字列は何通りできるか。
(3)母音字が3つ連続して並ぶ文字列は何通りできるか。
(4)母音字が連続して並ばない文字列は何通りできるか。
投稿日:2021.03.28

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第5問〜リーグ戦の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 6つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、 各大学の実力は拮抗していて、勝敗の確率は$\frac{1}{2}$ずつとする。 このとき、全勝する大学が存在する確率は$\frac{\fbox{アイ}}{\fbox{ウエ}}$ 、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{オカキ}}{\fbox{クケコ}}$ 、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{サシス}}{\fbox{セソタ}}$である。

(2) 4つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、4つの大学のうちK大学の実力が他の3つの大学よりもまさっていて、K大学が他の大学に勝つ確率は$\frac{3}{4}$負ける確率は$\frac{1}{4}$とする。一方で、K大学以外の3つの大学の2 実力は拮抗していて、これらの大学同士の勝敗の確率は$\frac{1}{2}$ずつとする。このとき、全勝する大学が存在する確率はする確率は、$\frac{\fbox{チツ}}{\fbox{テト}}$、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{ナニ}}{\fbox{ヌネ}}$、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{ノハ}}{\fbox{ヒフ}}$である。
この動画を見る 

数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上とし、$n$組の夫婦が、$2n$人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
この動画を見る 

例のやつ

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
コインを繰り返し投げて同じ面が3回続けて出たら終了
$n,n+1,n+2$回目に表が出て終了する場合の数$A_n$
$A_n$を求めよ.

この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。

$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}$

2021上智大学理系過去問
この動画を見る 

福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(3) 
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
この動画を見る 
PAGE TOP