2024年問題 - 質問解決D.B.(データベース)

2024年問題

問題文全文(内容文):
$2^a+a^3 = 2024$となる自然数a=?
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a+a^3 = 2024$となる自然数a=?
投稿日:2024.01.03

<関連動画>

数学「大学入試良問集」【6−3 内接四角形】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四角形$ABCD$が、半径$\displaystyle \frac{65}{8}$の円に内接している。
この四角形の週の長さが$44$で、辺$BC$と辺$CD$の長さがいずれも$13$であるとき、残りの2辺$AB$と$DA$の長さを求めよ。
この動画を見る 

【高校数学】2次関数の最大最小例題~定義域の両方に文字~ 2-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=-x^2+4x+5(a \leqq x \leqq a+2)$について、

(1) 最大値を求めよ

(2) 最小値を求めよ
この動画を見る 

東京医科大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{30\sqrt{a}-319\sqrt{b}}=\sqrt a-\sqrt b$であるとき、$a,b$の値を求めよ。

東京医科大学過去問
この動画を見る 

因数分解できない因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2-3x-2$
この動画を見る 

福田の数学〜神戸大学2025理系第2問〜整数部分と小数部分

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a$に対して、$a$を超えない最大の整数を

$k$とするとき、

$a-k$を$a$の小数部分という。

$n$を自然数とし、$a_n=\sqrt{n^2+1}-n$とおく。

以下の問いに答えよ。

(1)$0\lt a_n \lt 1$が成り立つことを示せ。

(2)$b_n$を$\left(3n-\dfrac{1}{a_n}\right)$の小数部分とする。

$b_n$を$n$を用いて表せ。

(3)$b_n$を(2)で定めるものとする。

$m,n$を異なる$2$つの自然数とするとき、

$a_m+b_n \neq 1$であることを示せ。

$2025$年神戸大学理系過去問題
この動画を見る 
PAGE TOP