大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分 - 質問解決D.B.(データベース)

大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
投稿日:2024.06.23

<関連動画>

【高校数学】毎日積分52日目 実践編③回転体シリーズ~軸からの最長距離と最短距離~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの関数$f(x)=e^{-x} \sin x(0\leqq x\leqq 2\pi)$と$g(x)=-e^{-x}(0\leqq x\leqq 2\pi)$について、次の問いに答えよ。
(1)$f(x)$が最小値をとるときの$x$の値を求めよ。
(2)$f(x)=g(x)$をみたす$x$の値を求めよ。
(3)曲線$C1:y=f(x),C2:y=g(x)$と$y$軸で囲まれる部分を$x$軸のまわり
に1回転してできる立体の体積$V$を求めよ。
この動画を見る 

大学入試問題#217 東京理科大学 改(2019) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{(log\ x)^3}{x}(1-log\ x)^4dx$

出典:2019年東京理科大学 入試問題
この動画を見る 

青山学院大学(2007年) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{x^2+1}{x+1} dx$

出典:2007年青山学院大学
この動画を見る 

【数Ⅲ-157】定積分の部分積分法③

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ

①$\int_1^{e} (\log x)^2dx$

➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
この動画を見る 

大学入試問題#590「見た目以上に難しめ」 横浜市立大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \displaystyle \frac{\cos^2\ x}{\sin^3\ x} dx$

出典:2020年横浜市立大学医理学部 入試問題
この動画を見る 
PAGE TOP