【高校数学】 数Ⅰ-45 2次関数の最大・最小④ ・ 動く軸編 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-45  2次関数の最大・最小④ ・ 動く軸編

問題文全文(内容文):
aは定数とする。関数$y=x^2-2ax+a(0 \leqq x \leqq 2)$の最大値、最小値を、次の各場合について求めよう。
①$a \leqq 0$
②$0 \lt a \lt 1$
③$a=1$
④$1 \lt a \lt 2$
⑤$a \geqq 2$
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
aは定数とする。関数$y=x^2-2ax+a(0 \leqq x \leqq 2)$の最大値、最小値を、次の各場合について求めよう。
①$a \leqq 0$
②$0 \lt a \lt 1$
③$a=1$
④$1 \lt a \lt 2$
⑤$a \geqq 2$
投稿日:2014.08.10

<関連動画>

【高校数学】命題と証明の例題~できなやばい問題~ 1-18.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$

-----------------

2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
この動画を見る 

因数分解の全パターン③【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
この動画を見る 

整数問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。

一橋大過去問
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 

円 面積最大 角度最大 A

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)△ABCの面積が最大の時
(2)$\angle ABC$が最大の時
BC=?
*図は動画内参照

洛南高等学校
この動画を見る 
PAGE TOP