福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(3) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(3)

問題文全文(内容文):
①$z^4=-8+8\sqrt3i$ を解け。
②$z=\displaystyle \frac{\sqrt3}{2}+\displaystyle \frac{1}{2}i$ のとき、$(1+\sqrt3i)z^n+2i=0$
を満たす最小の自然数$n$を求めよ。
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
①$z^4=-8+8\sqrt3i$ を解け。
②$z=\displaystyle \frac{\sqrt3}{2}+\displaystyle \frac{1}{2}i$ のとき、$(1+\sqrt3i)z^n+2i=0$
を満たす最小の自然数$n$を求めよ。
投稿日:2018.05.25

<関連動画>

福田の数学〜立教大学2022年理学部第4問〜複素数平面上の点列と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
問題文全文(内容文):
複素数$\alpha=\frac{\sqrt3\ i}{1+\sqrt3\ i}$に対して、複素数$z_n$を
$z_n=8\alpha^{n-1}\ \ \ \ (n=1,\ 2,\ 3,\ ...)$
によって定める。ただしiは虚数単位とする。複素数平面において、原点をOとし、
$z_n$の表す点を$P_n$とする。このとき、以下の問いに答えよ。
(1)$\alpha$の絶対値|$\alpha$と変革$\arg\alpha$をそれぞれ求めよ。
ただし、$0 \leqq \arg\alpha \lt 2\pi$とする。
(2)$z_2,\ z_3$の実部と虚部をそれぞれ求めよ。
(3)$z_n$の極形式をnを用いて表せ。
(4)$O,\ P_n,\ P_{n+1}$を頂点とする三角形の面積$S_n$を$n$を用いて表せ。
(5)(4)で定めた$S_n$に対して、無限級数$\sum_{n=1}^{\infty}S_n$の和Sを求めよ。

2022立教大学理工学部過去問
この動画を見る 

【数ⅢC】複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
動画について不明点や質問などあればコメント欄にお気軽にお書きください!
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z $(Z \neq 0)$
$ω=Z+\frac{1}{Z}+5$
|Z|=2
|ω|の最大値と最小値
この動画を見る 

順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
この動画を見る 

15東京都教員採用試験(数学:1-3 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$α、β \in \mathbb{ C }$
$α^2+αβ+β^2=0$ (α,β≠0)
$arg \frac{α}{β}$
この動画を見る 
PAGE TOP