福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
投稿日:2023.06.04

<関連動画>

福田のおもしろ数学162〜式の値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$z$+$\displaystyle\frac{1}{z}$=1 のとき、$z^{2024}$+$\displaystyle\frac{1}{z^{2024}}$ の値を求めてください。
この動画を見る 

【数Ⅰ】【2次関数】解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の方程式が実数解をもつように、実数 $m$ の値の範囲を定めよ。
$(1)\, x^2+2mx+3=0$
$(2)\, x^2+mx+m=0$

問題2
2次方程式 $x^2-2mx-4m=0$ が次の条件を満たすように、定数 $m$ の値の範囲を定めよ。
$(1)$ 異なる2つの実数解をもつ
$(2)$ 実数解をもたない

問題3
次の条件を満たすように、実数 $m$ の値の範囲を定めよ。
$(1)$ 2次関数 $y=x^2-2mx+2m+3$ のグラフが $x$ 軸と共有点をもつ
$(2)$ 2次関数 $y=x^2+2mx-m+2$ のグラフが $x$ 軸と共有点をもたない
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=3x²-6ax+2~~(0\leqq x \leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る 

定期試験レベル?平方根の式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2 = \frac{\sqrt 7 + 2}{\sqrt 2}$ , $b^2 = \frac{\sqrt 7 - 2}{\sqrt 2}$
(a>0 , b>0)
$ab=?$
$a^2b^2=?$
この動画を見る 

【数Ⅰ】【データの分析】データが変更されたときの平均、分散の関係 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 
PAGE TOP