数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく

問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
投稿日:2021.10.21

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
四面体 $\mathrm{ABCD}$ において、$|\overrightarrow{\mathrm{AB}}| = 3,$ $|\overrightarrow{\mathrm{AC}}|$ $=|\overrightarrow{\mathrm{AD}}|$$= |\overrightarrow{\mathrm{BC}}|$$=|\overrightarrow{\mathrm{BD}}|=4,$$|\overrightarrow{\mathrm{CD}}|=5$であるとき $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$ $=\frac{\fbox{アイ}}{\fbox{ウエ}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$ $=\frac{\fbox{オカ}}{\fbox{キク}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}$$=\frac{\fbox{ケコ}}{\fbox{サシ}}$
ここで、頂点 $\mathrm{D}$ から $\triangle \mathrm{ABC}$ に下した垂線の足を $\mathrm{H}$ とすると、$\overrightarrow{\mathrm{AH}}$ は $\overrightarrow{\mathrm{AB}}$ と $\overrightarrow{\mathrm{AC}}$ を用いて
$\overrightarrow{\mathrm{AH}}$ $=\frac{\fbox{スセ}}{\fbox{ソタ}} \overrightarrow{\mathrm{AB}}$ $+ \frac{\fbox{チツ}}{\fbox{テト}}\overrightarrow{\mathrm{AC}}$ とあらわすことができる。
垂線 $\mathrm{DH}$ の長さは $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ であるから、四面体 $\mathrm{ABCD}$ の体積は $\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。
この動画を見る 

【数B】空間ベクトル:平面の方程式の求め方(②平面の方程式の一般形を用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 

【空間ベクトル】平面の方程式 3点を通る

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

【数C】【空間ベクトル】a,b,cに対して、|a|=6,|c|=1,aとbのなす角は60°またaとc,bとc,a+b+cと2a-5bのなす角はいずれも90°である。この時|b|,|a+b+c|を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間の3つのベクトルa,b,cに対して、|a|=6,|c|=1,aとbのなす角は60°,またaとc,bとc,a+b+cと2a-5bのなす角は,いずれも90°である。この時、|b|,|a+b+c|を求めよ。
この動画を見る 
PAGE TOP