これ解けますか? - 質問解決D.B.(データベース)

これ解けますか?

問題文全文(内容文):
成立させよ
0+0+0+0=24
単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
成立させよ
0+0+0+0=24
投稿日:2022.08.10

<関連動画>

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 

東京女子大 漸化式・数列の最大値

アイキャッチ画像
単元: #数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1$は7であり,$n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2$である.

(1)$a_n$の一般項を求めよ.

(2)$a_n$の最大値を求めよ.

東京女子大過去問
この動画を見る 

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(2) 完全順列\hspace{140pt}\\
1,2,3,4を1列に並べたものをa_1a_2a_3a_4とする。\\
a_1≠1,a_2≠2,a_3≠3,a_4≠4を満たす並べ方は何通りあるか。
\end{eqnarray}
この動画を見る 

等差数列の一般項 山形大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013年 山形大学 過去問

公差が0でない等差数列{$a_n$}
$a_5^2+a_6^2=a_7^2+a_8^2$
$\displaystyle \sum_{n=1}^{13} a_n=13$
一般項$a_n$を求めよ。
この動画を見る 

福田の数学〜東京大学2018年理系第2問〜数列の増減とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{ 1 },a_{ 2 }・・・$を
$a_{ n }=\dfrac{2_{ n }+{}_1 \mathrm{ C }_n}{n!}$(n=1,2,・・・)
で定める
(1)$n \geqq 2$とする。$\dfrac{a_{n}}{a_{n-1}}$を規約分数$\dfrac{q_{n}}{p_{n}}$として表したときの分母$p_{n} \geqq 1$と分子$q_{n}$を求めよ。
(2)$a_{n}$が整数となる$n\geqq1$をすべて求めよ。

2018東京大学理過去問
この動画を見る 
PAGE TOP