【数A】【場合の数と確率】くじを引く順番と確率 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【場合の数と確率】くじを引く順番と確率 ※問題文は概要欄

問題文全文(内容文):
10本のくじの中に当たりくじが2本ある。引いたくじをもとに戻さないで、A,B,Cの3人がこの順に1本ずつ引くとき、次の問に答えよ。
(1)Cが当たる確率を求めよ。
(2)次の文のうち、正しいものを1つ選べ。
①Aが最も当たりやすい。
②Bが最も当たりやすい。
③Cが当たる確率を求めよ。
④3人とも当たりやすさは同じ。
チャプター:

0:00 オープニング
0:05 問題文
0:19 (1)解説
3:00 (2)解説
3:46 エンディング

単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
10本のくじの中に当たりくじが2本ある。引いたくじをもとに戻さないで、A,B,Cの3人がこの順に1本ずつ引くとき、次の問に答えよ。
(1)Cが当たる確率を求めよ。
(2)次の文のうち、正しいものを1つ選べ。
①Aが最も当たりやすい。
②Bが最も当たりやすい。
③Cが当たる確率を求めよ。
④3人とも当たりやすさは同じ。
投稿日:2025.02.21

<関連動画>

気付けば一瞬の確率 愛工大名電(愛知)

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
この動画を見る 

【高校数学】同じものを含む順列~考え方は簡単~1-11 【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
同じものを含む順列解説動画です
この動画を見る 

福田の数学〜早稲田大学2025教育学部第2問〜組合せと確率の基本的な性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$n$を自然数とする。

$1$から$n$mでの数字がもれなく一つずつ記入された

$n$枚の赤色のカードと$1$から$n$までの数字がもれなく

一つずつ記入された$n$枚の白色のカードがある。

この$2n$枚のカードの中から同時に$2$枚を取り出し、

カードに記入された数字を確認した後にもとに戻す、

という試行を$2$回行う。次の問いに答えよ。

(1)$1$回目に取り出した$2$枚のカードに記入された

数字が同じであり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した$2$枚の

カードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(2)$1$回目に取り出した$2$枚のカードに記入された

数字が異なり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した

$2$枚のカードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(3)$1$回目に取り出した$2$枚のカードに記入された数字と

$2$回目に取り出した$2$枚のカードに記入された

数字の間に共通の数字が存在する確率を

$n$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 

2人だけ隣り合う並び方 京都産業大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
男子3人、女子3人の合わせて6人が1列に並ぶとき、女子のうち2人だけが隣り合う並び方は何通り?
京都産業大学附属中学校・高等学校
この動画を見る 

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP