ミスリードに気をつけろ!久留米大(医) - 質問解決D.B.(データベース)

ミスリードに気をつけろ!久留米大(医)

問題文全文(内容文):
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ

(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ

久留米大(医)過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ

(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ

久留米大(医)過去問
投稿日:2023.11.22

<関連動画>

ただの計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを計算せよ.
$\left(\dfrac{4}{(\sqrt5+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}+1\right)^{48}$
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(1)〜4次式の因数分解と未定係数法

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)整式$x^4-13x^2+18x-5$を整数係数の

範囲で因数分解すると

$(x^2+\boxed{ア} x+\boxed{イ})(x^2+\boxed{ウ}x+\boxed{エ})$

となる。

ただし、$\boxed{ア}\lt \boxed{ウ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

解を出さなくても解ける! 難関高校受験するのなら絶対に知って欲しい 解と〇〇の関係 明大明治

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-4x+1=0$の2つの解をa,bとするとき
$a^{10}b^8 + a^6b^8 - 3a^5b^5 =?$

明治大学付属明治高等学校
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る 

2021渋谷幕張 円 D

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle BAC=60°$
(1)DE=?
(2)CE=?
*図は動画内参照

2021渋谷教育学園幕張高等学校
この動画を見る 
PAGE TOP