見掛け倒しの「どっちがでかい?」 - 質問解決D.B.(データベース)

見掛け倒しの「どっちがでかい?」

問題文全文(内容文):
どちらが大きいか?
$P_{2022} vs P_{2023}$

$P_n$はサイコロをn回ふって出た目の和が7の倍数になる確率を求めよ.
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$P_{2022} vs P_{2023}$

$P_n$はサイコロをn回ふって出た目の和が7の倍数になる確率を求めよ.
投稿日:2023.01.21

<関連動画>

慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか

(1)
$x+y+z=24$

(2)
$x+y+z=24$
$x \leqq y \leqq z$

(3)
$x+2y+3z=24$

出典:2009年慶應義塾 過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第3問〜ウイルスの保有と症状に関する条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 10万人の集団があり、この集団に対してウイルスXとウイルスYの保有及び症状の有無を調べた。
この集団のうち2万人がウイルスXを保有し、ウイルスX保有者の$\frac{1}{4}$、ウイルスX非保有者の$\frac{1}{4}$がウイルスYを保有していた。ウイルスXが原因でみられる症状は発熱のみ、ウイルスYが原因でみられる症状は腹痛のみであり、ウイルスを保有していなくても発熱や腹痛がみられることがある。
過去の研究から、発熱はウイルスX保有者に確率$\frac{3}{4}$、ウイルスX非保有者に確率$\frac{1}{10}$でみられ、腹痛はウイルスY保有者に確率$\frac{9}{10}$、ウイルスY非保有者に確率$\frac{1}{5}$でみられることがわかっている。なお、発熱と腹痛はそれぞれ独立に発症し互いに影響しないものとする。
(1)この集団から無作為に選ばれた1人がウイルスXを保有していないが発熱がみられる確率は$\boxed{\ \ ト\ \ }$である。
(2)この集団から無作為に選ばれた1人がウイルスYを保有していないが発熱がみられる確率は$\boxed{\ \ ナ\ \ }$である。
(3)この集団から無作為に1人を選んでウイルスの保有および症状の有無を調べて集団に戻す試行を3回繰り返した。
(i)3回の試行で選ばれた人のうち、1人のみに腹痛がみられる確率は$\boxed{\ \ ニ\ \ }$である。
(ii)3回の試行で選ばれた人のうち、1人のみに腹痛がみられるとき、選ばれた人のうち少なくとも1人がウイルスYを保有している確率は$\boxed{\ \ ヌ\ \ }$である。
この動画を見る 

数学「大学入試良問集」【4−5 整数の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
5桁の自然数$n$の万の位、千の位、百の位、十の位、一の位の数字をそれぞれ$a,b,c,d,e$とする。
次の各条件について、それを満たす$n$は、何個あるか。
(1)$a,b,c,d,e$が互いに異なる。
(2)$a \gt b$
(3)$a \lt b \lt c \lt d \lt e$
この動画を見る 

福田の数学〜北海道大学2024年理系第2問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面と呼ぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を$n$回行ったとき、持ち点が2以下である確率を求めよ。ただし、$n$は2以上の自然数とする。
(2)この試行を4回行って持ち点が10以上であった時に、さらにこの試行を2回行って持ち点が17以上である条件付き確率を求めよ。
この動画を見る 
PAGE TOP