【高校数学】三角比4.5~例題・三角比といえばこれ・基礎~ 3-4.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】三角比4.5~例題・三角比といえばこれ・基礎~ 3-4.5【数学Ⅰ】

問題文全文(内容文):
(1) 0°≦$\theta$≦180°のとき、sin$\theta$=$\frac{ \sqrt{3} }{ 2 }$を満たす$\theta$を求めよ。

(2) 0°≦$\theta$≦180°のとき、cos$\theta$=-$\frac{ 1 }{ \sqrt{2} }$を満たす$\theta$を求めよ。

(3) 0°≦$\theta$≦180°のとき、tan$\theta$=-$\sqrt{3}$を満たす$\theta$を求めよ。

(4) 0°≦$\theta$≦180°のとする。sin$\theta$=$\displaystyle \frac{3}{5}$のとき、cos$\theta$とtan$\theta$の値を求めよ。

(5) 直線y=$\sqrt{3}$xとx軸の正の向きとのなす角$\theta$を求めよ。
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0°≦$\theta$≦180°のとき、sin$\theta$=$\frac{ \sqrt{3} }{ 2 }$を満たす$\theta$を求めよ。

(2) 0°≦$\theta$≦180°のとき、cos$\theta$=-$\frac{ 1 }{ \sqrt{2} }$を満たす$\theta$を求めよ。

(3) 0°≦$\theta$≦180°のとき、tan$\theta$=-$\sqrt{3}$を満たす$\theta$を求めよ。

(4) 0°≦$\theta$≦180°のとする。sin$\theta$=$\displaystyle \frac{3}{5}$のとき、cos$\theta$とtan$\theta$の値を求めよ。

(5) 直線y=$\sqrt{3}$xとx軸の正の向きとのなす角$\theta$を求めよ。
投稿日:2019.03.04

<関連動画>

【中学数学】平方根・ルートの計算演習~乗法公式1~ 2-9【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{5}+3)(\sqrt{5}-2)$

2⃣
$(\sqrt{2}+3)(\sqrt{2}-1)$

3⃣
$(3\sqrt{5}-3)(6+3\sqrt{5})$
この動画を見る 

【数Ⅰ】2次関数:放物線とx軸との交点の位置 その1

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ 二次関数】
$y=x^2+mx+2$が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)このグラフとx軸の正の部分が異なる2点で交わる。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第5問〜散布図と箱ひげ図の関係と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 以下の図は、ある小学校の15人の女子児童の4年生の4月に計測した身長を横軸に、5年生の4月に計測した身長を縦軸にとった散布図である。(※動画参照)
と表すことができる。よってS(a)を最小にするaはa=$\boxed{\ \ ミ\ \ }$である。
S(a)の最小値は、女子児童の4年生のときと6年生のときの身長の相関係数rと$s_y^2$を用いて$\boxed{\ \ ム\ \ }$と表せる。
また、左の散布図で示した女子児童の計測値を計算すると
$s_x^2$=29.00, $s_y^2$=42.65, $s_{xy}$=31.69
であった。これらを用いてS(a)を最小にするaを計算し、小数第4位を四捨五入すると$\boxed{\ \ メ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数Ⅰ】【図形と計量】面積応用10 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺$c$と2つの角$\rm A,B$が与えられた$rm\triangle ABC$の面積を$S$とするとき、次の問いに答えよ。
(1)$a$を$c,\rm A,B$で表せ。 (2)$S=\dfrac{c^2\rm\sin A\sin B}{2\sin\rm(A+B)}$を証明せよ。
この動画を見る 

最後まで油断するなよ因数分解 慶應義塾

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(x^2+4x-4)^2-2(x^2+4x-4)+1
この動画を見る 
PAGE TOP