書き出す訳にはいかないんだ。そんな時間ないんだ。ではどうする? 白陵高校 - 質問解決D.B.(データベース)

書き出す訳にはいかないんだ。そんな時間ないんだ。ではどうする? 白陵高校

問題文全文(内容文):
異なる12冊の本から2冊以上の本を選びたい。
選ぶ方法は何通り?

白陵高等学校
単元: #数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
異なる12冊の本から2冊以上の本を選びたい。
選ぶ方法は何通り?

白陵高等学校
投稿日:2022.12.11

<関連動画>

場合の数 組み合わせ考え方の基本1 【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
この動画を見る 

【高校数学】補集合とド・モルガンの法則~言葉の意味を正しく理解~ 1-3【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
補集合とド・モルガンの法則の説明動画です
この動画を見る 

【高校数学】  数A-18  組合せ⑤ ・ 重複編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①桃、みかん、梨の3種類の果物がたくさんあり、その中から6個果物を買うとき、買い方は何通り?

②方程式$x+y+z=7$の負ではない整数解は何個?

③方程式$x+y+z=12$の正の整数解は何個?
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 
(1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率$\dfrac{1}{4}$で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき
$(\textrm{a})$2つの面が白色、2つの面が黒色になる最小の試行回数は$\boxed{\ \ アイ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ キク\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率$\dfrac{1}{6}$で選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき
$(\textrm{a})$3つの面が白色、3つの面が黒色になる最小の試行回数は$\boxed{\ \ スセ\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
$(\textrm{b})$すべての面が黒色になる最小の試行回数は$\boxed{\ \ テト\ \ }$であり、この試行回数で同状態が実現する確率は$\dfrac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}$である。

慶應義塾大学2021年環境情報学部第3問
この動画を見る 

福田の数学〜神戸大学2025文系第3問〜単位円周上の2点と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#場合の数#三角関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$個のさいころを$2$回続けて投げるとき、

出た目の数を順に$a,b$とおく。

座標平面上の$2$点$A,B$を

$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$

とし、原点を$O$とする。

以下の問いに答えよ。

(1)$3$点$O,A,B$が一直線上にある確率を求めよ。

(2)$3$点$O,A,B$が一直線上になく、かつ

三角形$OAB$の面積が$\dfrac{1}{4}$以下である

確率を求めよ。

(3)$2$点$A,B$間の距離が$1$より

大きい確率を求めよ。

$2025$年神戸大学文系過去問題
この動画を見る 
PAGE TOP