大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分 - 質問解決D.B.(データベース)

大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
投稿日:2024.03.09

<関連動画>

大学入試問題#236 富山県立大学(2012) #背理法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$x^3-x^2+2x-1=0$の実数解は無理数であることを背理法を用いて示せ

出典:2012年富山県立大学 入試問題
この動画を見る 

大学入試問題#796「解法は、ほぼ1択か」 #横浜国立大学(2024) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\sqrt{ 3 }} \displaystyle \frac{e^{3x}+4e^{2x}+e^x}{e^{4x}+2e^{2x}+1}dx$

出典:2024年横浜国立大学
この動画を見る 

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
この動画を見る 

大学入試問題#868「ヒントがあれば、どうってことない」 #埼玉医科大学(2010) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ますただ
問題文全文(内容文):
$a \leq b \leq c$とする。
$\sqrt{ 10+\sqrt{ 24 }+\sqrt{ 40 }+\sqrt{ 60 } }=\sqrt{ a }+\sqrt{ b }+\sqrt{ c }=$であるとき、$a,b,c$の値を求めよ。

出典:2010年埼玉医科大学
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第3問〜条件を満たす2次式に関する証明と反例の作成

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$p$,$q$は互いに素である自然数とする。実数$a$,$b$,$c$に対して、$x$の2次多項式 $f(x)=ax^{ 2 }+bx+c$を考える。 ただし、$a \neq 0$とする。$f(x)$が条件「ある整数$k$について$f(k-1)$, $f(k)$, $f(k + 1)$ は整数となり、$f(x)$は $px-q$で割り切れる」をみたすとき、次の問いに答えよ。
(1) $\frac{2a}{p}$,$\frac{2c}{q}$は整数であることを示せ。
(2) 命題「$f(x)$が上の条件をみたすならば、$\frac{a}{p}$,$\frac{c}{q}$は整数である」は正しいか。正しければそれを示せ。正しくなければ、反例を1つあげよ。
この動画を見る 
PAGE TOP