極限の基本問題 立教大 - 質問解決D.B.(データベース)

極限の基本問題 立教大

問題文全文(内容文):
立教大学過去問題
limx0sin(1cosx)x2
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
limx0sin(1cosx)x2
投稿日:2023.07.18

<関連動画>

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 複素数平面上における図形C1, C2, ...,Cn, ...は次の条件(A)と(B)を満たすとする。ただし、iは虚数単位とする。
(A)C1は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zがCn上を動くとき2w=z+1+iで定まるwの描く図形がCn+1である。
(1)すべての自然数nに対して、Cnは円であることを示し、その中心を表す複素数αnと半径rnを求めよ。
(2)Cn上の点とOとの距離の最小値をdnとする。このとき、dnを求めよ。
また、limndnを求めよ。

2023北海道大学理系過去問
この動画を見る 

大学入試問題#846「基本問題」 #岩手大学(2017) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
limx0(1+x)1x=eを利用して
limx0tanxsinxx4{log(x2+x3)log x2}を求めよ

出典:2017年岩手大学 入試問題
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 正の数列x1,x2,x3,...,xn,... は以下を満たすとする。
x1=8, xn+1=1+xn (n=1,2,3,...)
このとき、次の問いに答えよ。
(1)x2,x3,x4をそれぞれ求めよ。
(2)すべてのn≧1について(xn+1-α)(xn+1+α)=xn-α となる定数αで、
正であるものを求めよ。
(3)αを(2)で求めたものとする。すべてのn≧1についてxnαであることをnに関する数学的帰納法で示せ。
(4)極限値limnxnを求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系033〜極限(33)関数の極限、色々な極限(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
III (3)limx[3x]x 
この動画を見る 

13神奈川県教員採用試験(数学:9番 数列の極限値)

アイキャッチ画像
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
9⃣a1=1,a2=2,(an+2)5=(an+1)4an
limnanを求めよ。
この動画を見る 
PAGE TOP preload imagepreload image