【高校数学】条件付き確率例題~組合せを使おう~ 2-8.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】条件付き確率例題~組合せを使おう~ 2-8.5【数学A】

問題文全文(内容文):
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
チャプター:

00:00 はじまり

00:28 問題と解説

06:47 まとめ

08:21 問題と解答

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
投稿日:2020.08.14

<関連動画>

【順列と何が違うの!?】組合せを解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
組合せ
男子4人、女子5人の中から5人の委員を選ぶ
①選び方は何通り
②男子2人、女子3人の選び方
この動画を見る 

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
この動画を見る 

【高校数学】確率の乗法定理~改めて確認しよう~ 2-8【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
当たりくじを3本含む10本のくじの中から引いたくじをもとに戻さないで、
1本ずつ2回続けてくじを引く。2本とも当たる確率を求めよ。
この動画を見る 

数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上とし、$n$組の夫婦が、$2n$人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ ある大学で来学期の授業の形式をどうするかを検討している。\hspace{131pt}\\
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、\\
\textrm{Web}上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)\\
\textrm{Web}会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)\\
の3つがあるとする。\\
また、来学期の新型ウイルスの感染状況については、\\
急激に拡大している状況(感染状況xと呼ぶことにする)、\\
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、\\
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。\\
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、\\
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。\\
\\
来学期の感染状況について、感染状況xである確率をp_x、\\
感染状況yである確率をp_y、感染状況zである確率をp_zとすると、\\
xyz空間において点p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の\\
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、\\
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをl_y、\\
(0,0,1)と向かいの辺に下した垂線の長さをl_zとする。\\
(1)このときp_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z\ \ \ \ が成り立つ。\\
\\
いま、正三角形上の点p=(p_x,p_y,p_z)に対して、上記の評価の期待値を最大にする\\
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が\\
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。\\
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にxという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にyという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にzという感染状況のラベルをつけることにする。\\
\\
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)\\
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、\\
原点には\left\{x,y,z\right\}の3つのラベルがつく。\\
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの\\
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、\\
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る\\
ラベルについて下記の選択肢から選びなさい。\\
単一のラベルがつく場合:\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}\\
2つのラベルがつく場合:\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},\\
\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}\\
3つのラベルがつく場合:\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}\\
4つのラベルがつく場合:\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}\\
\\
\\
選択肢:\ \ \ (1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z \ \ \
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP