#北海道大学1957#方程式_65 - 質問解決D.B.(データベース)

#北海道大学1957#方程式_65

問題文全文(内容文):
$\dfrac{10x-10^{-x}}{10x+10^{-x}}=a \ (\vert a \vert \gt 1)$
$x$について解け.

1957北海道大学過去問題
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{10x-10^{-x}}{10x+10^{-x}}=a \ (\vert a \vert \gt 1)$
$x$について解け.

1957北海道大学過去問題
投稿日:2024.10.08

<関連動画>

【数学I】複2次式の因数分解(置き換え)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^4-13x^2+36$を因数分解せよ
この動画を見る 

【数Ⅰ】【図形と計量】0°≦θ≦180°とする。次の不等式を満たすもの値の範囲を求めよ。-1<√3 tanθ <3 (他8問)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。


$\sin\theta > \dfrac{1}{\sqrt{2}}$

$\sin\theta \leq \dfrac{1}{2}$

$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$

$\cos\theta < -\dfrac{1}{\sqrt{2}}$

$0 < \tan\theta \leq 1$

$\tan\theta \geq \sqrt{3}$

$1 < 2\sin\theta \leq \sqrt{3}$

$1 \leq -2\cos\theta < \sqrt{3}$

$-1 < \sqrt{3}\tan\theta < 3$
この動画を見る 

等式の変形だけど実は2次〇〇○

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=?$ $(a+b \neq 0)$
$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
この動画を見る 

18和歌山県教員採用試験(数学:4番 無理数の証明)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$2^x=5$をみたす実数$x$は
無理数であることを示せ.
この動画を見る 

【数Ⅰ】【データの分析】変量変換2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量$\mathit{x}$のデータが次のように与えられている。
672, 693, 644, 665, 630, 644
$\mathit{c}=7 , \mathit{x}_{0}=644 ,\mathit{u}=\frac{x-x₀}{c}$として新たな変量$\mathit{u}$を作る。
(1)変量$\mathit{u}$のデータの平均値、分散、標準偏差を求めよ。
(2)変量$\mathit{x}$のデータの平均値、分散、標準偏差を求めよ。
この動画を見る 
PAGE TOP