福田のおもしろ数学171〜ガウス記号の付いた方程式の解 - 質問解決D.B.(データベース)

福田のおもしろ数学171〜ガウス記号の付いた方程式の解

問題文全文(内容文):
$\displaystyle\left[\frac{3}{x}\right]$-$\displaystyle\left[\frac{1}{x}\right]$=3 を満たす$x$を求めなさい。
単元: #数Ⅱ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\left[\frac{3}{x}\right]$-$\displaystyle\left[\frac{1}{x}\right]$=3 を満たす$x$を求めなさい。
投稿日:2024.06.21

<関連動画>

大学入試問題#129 関西学院大学(1991) 二項定理の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(a+b+\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b})^7$を展開した時の$ab^2$の係数を求めよ。

出典:1991年関西学院大学 入試問題
この動画を見る 

【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。

(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。

京都大過去問
この動画を見る 

【判別式をイメージする!】2次関数の判別式と交点の数の解き方はこれだ!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

$y=x^2+2x-a$が$x$軸を2つの交点を持つような$a$の条件を求めよ


$y=2x^2+3x+a$が$x$軸を1つの交点を持つような$a$の条件を求めよ


$y=ax^2-4x+2$が$x$軸と交点を1つも持たないような$a$の条件を求めよ
この動画を見る 

福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(3)〜受験編、東大の問題に挑戦!

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} \triangle ABC$は一辺の長さが2の正三角形である。点Aから発射された
光線は$\triangle ABC$の各辺にぶつかるたびに反射する。このとき、入射角
と反射角は等しい。この光線は$\triangle ABC$のどれかの頂点にぶつかると
そこで吸収されてしまう。今、Aから傾き$\displaystyle \frac{\sqrt3}{6}$
で発射された光線は何回か反射した後、どこかの
頂点に吸収された。さて、何回反射し、どの頂点に吸収されたのか。

東京大学過去問
この動画を見る 
PAGE TOP