東北大 二次関数と接線 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東北大 二次関数と接線 Mathematics Japanese university entrance exam

問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
投稿日:2019.02.15

<関連動画>

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率$p(0\leqq P\leqq 1)$で$+1$, $1-p$で$+2$進む.
自然数nの地点に到達する確率$P_n$を求めよ.

大阪教育大過去問
この動画を見る 

東海大 約数の総和 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08東海大学過去問題
mの約数の総和をS(m)
例 S(4)=1+2+4=7
(1)P素数 n自然数 $S(P^n)$
(2)$2^{n+1}-1$が素数、$m=2^n(2^{n+1}-1)$
S(m)をmで表せ
(3)$m=2^s3^t・5,S(m)=3m$
mを求めよ。
この動画を見る 

福田のわかった数学〜高校1年生028〜いろいろなグラフ(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(2)\\
-2 \leqq x \leqq 4の範囲で\\
\\
y=[x]-x\\
\\
のグラフを描け。
\end{eqnarray}
この動画を見る 

頭を柔らかく!動画内にヒントあり

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
97<99<▢▢<▢▢<103
この動画を見る 

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 
PAGE TOP