福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式

問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
投稿日:2024.05.12

<関連動画>

【高校数学】等差数列の和の例題演習・基礎 3-4.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の等差数列の和を求めよ。
(1)初項100,末項30,項数7
(2)初項50,公差-4,項数n
(3)100,105,110,…,200
この動画を見る 

【高校数学】 数B-73 和の記号Σ(シグマ)②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の和を求めよう.

①$\displaystyle \sum_{k=1}^n {(4k+3)}$

②$\displaystyle \sum_{k=1}^n {(-3k^2+2k+4)}$

③$\displaystyle \sum_{k=1}^n {4・5^{k-1}}$

④$\displaystyle \sum_{k=1}^n {(k+1)(4k-3)}$
この動画を見る 

早稲田 群数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
この動画を見る 

大学入試問題#463「ええ問題や~~」 信州大学 理・医 (2016) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^n dx$
$=\displaystyle \frac{4^n(n!)^2}{(2n+1)!}$を示せ

出典:2016年信州大学医学部 入試問題
この動画を見る 

【高校数学】 数B-78 数列の和と一般項①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とすると,
$a_1=S_1,n\geqq 2$のとき,$a_n=①$

初項から第$n$項までの和$S_n$が次の式で表される数列$\{a_n\}$の一般項を求めよう.

②$n^2-4n$

③$3^n-1$
この動画を見る 
PAGE TOP