名古屋大 複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

名古屋大 複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
'92名古屋大学過去問題
$α=\frac{1-\sqrt7 i}{2},β=\frac{1+\sqrt7 i}{2}$
(1)次の等式を示せ。n自然数
$α^{n+1}+β^{n+1}=α^n+β^n-2(α^{n-1}+β^{n-1})$
(2)$α^n+β^n$が奇数であることを示せ。n自然数
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'92名古屋大学過去問題
$α=\frac{1-\sqrt7 i}{2},β=\frac{1+\sqrt7 i}{2}$
(1)次の等式を示せ。n自然数
$α^{n+1}+β^{n+1}=α^n+β^n-2(α^{n-1}+β^{n-1})$
(2)$α^n+β^n$が奇数であることを示せ。n自然数
投稿日:2018.11.19

<関連動画>

2021慶應義塾大(理工) 式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^2+3\alpha+3=0$のとき,$(\alpha+1)^2(\alpha+2)^5=\Box$
$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組をすべて求めよ.

2021慶應(理)
この動画を見る 

虚数解の6乗が実数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-ax+a=0$は虚数解$\beta$をもち$\beta^6$は実数である.
aの値を求めよ.
この動画を見る 

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る 

【数学Ⅱ】複素数『1の3乗根ω』の性質と問題演習

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^3-1=0$の虚数解の1つを$\omega$とするとき、次の式の値を求めよ。
(1)
$\omega^4+\omega^2+1$

(2)
$1+\displaystyle \frac{1}{\omega}+\displaystyle \frac{1}{\omega^2}$
この動画を見る 

神戸大 複素数の2次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+i=0$を解け

出典:1971年神戸大学 過去問
この動画を見る 
PAGE TOP