問題文全文(内容文):
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
チャプター:
0:00 オープニング
0:04 (1)解答
3:00 2次式を含む連立方程式を解く
3:45 (2)解答
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
投稿日:2025.02.22