東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】 - 質問解決D.B.(データベース)

東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】

問題文全文(内容文):
(1)実数x1<x<1,x0を満たすとき,次の不等式を示せ。

(1x)11x<(1+x)1x

(2)次の不等式を示せ。

0.9999101<0.99<0.9999100

東大過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数x1<x<1,x0を満たすとき,次の不等式を示せ。

(1x)11x<(1+x)1x

(2)次の不等式を示せ。

0.9999101<0.99<0.9999100

東大過去問
投稿日:2022.11.30

<関連動画>

微分方程式②【微分方程式の解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
dxdt=x+e2t
(1)x=e2tが解
(2)x=e2t+cetが一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
この動画を見る 

福田の数学〜京都大学2023年理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 Oを原点とするxyz空間において、点Pと点Qは次の3つの条件(a),(b),(c)を満たしている。
(a):点Pはx軸上にある。
(b):点Qはyz平面上にある。
(c):線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a),(b),(c)を満たしながらくまなく動くとき、線分PQが通過してできる立体の体積を求めよ。

2023京都大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
12x2(1)n{1x+11_k=2n(x)k1}xn12xn+1
(2)an=k=1n(1)k1k とするとき、次の極限値を求めよ。
limn(1)nn(anlog2)

2023大阪大学理系過去問
この動画を見る 

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4自然数nに対し,fn(x)=x1+1n(x>0)とおく.
また,正の実数an1anfn(x)dx=1満たすものとする.次の問い 
答えよ.

(1)関数fn(x)の不定積分を求めよ.

(2)anの値と極限limnanを求めよ.また,正の実数bn1bnfn+1(x)dx=1を満たすとき,bnの値と極限limnbnを求めよ.

(3)2以上の自然数kに対してk1kfn(x)dx>1kを示し,これを利用してan<4を証明せよ.

(4)1anfn+1(x)dx<1を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 以下の文章を読んで後の問いに答えよ。
三角関数cosx, sinxについては加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数f(x), g(x)が以下の条件を満たすとする。
(A)すべてのx, yについてf(x+y)=f(x)f(y)-g(x)g(y)
(B)すべてのx, yについてg(x+y)=f(x)g(y)+g(x)f(y)
(C)f(0)0
(D)f(x), g(x)はx=0で微分可能でf(0)=0, g(0)=1
条件(A), (B), (C)からf(0)=1, g(0)=0 がわかる。以上のことからf(x), g(x)はすべてのxの値で微分可能で、f(x)=g(x), g(x)=f(x)が成立することが示される。上のことから{f(x)+ig(x)}(cosxisinx)=1 であることが、実部と虚部を調べることによりわかる。ただしiは虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数f(x)=cosx, g(x)=sinxであることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', f(x), g(x)はx=0で微分可能でf(0)=a, g(0)=b
におきかえて、条件(A), (B), (C), (D)'を満たすf(x), g(x)はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)からf(0)=1, g(0)=0が上と同様にわかる。ここで
p(x)=eabxf(xb), q(x)=eabxg(xb)
とおくと、条件(A), (B), (C), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされる。すると前半の議論により、p(x), q(x)がまず求まり、このことを用いるとf(x)=    , g(x)=    が得られる。
(1)下線部①について、f(0)=1, g(0)=0であることを示せ。
(2)下線部②について、f(x)がすべてのxの値で微分可能な関数であり、
f(x)=g(x)となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
{f(x)+ig(x)}(cosxisinx)=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされることを示せ。つまりp(x)q(x)が、
(B)すべてのx, yについて、q(x+y)=p(x)q(y)+q(x)p(y)
(D)p(x), q(x)はx=0 で微分可能でp(0)=0, q(0)=1
を満たすことを示せ。また空欄    ,     に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image