#筑波大学(2016) #定積分 #Shorts - 質問解決D.B.(データベース)

#筑波大学(2016) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$

出典:2016年筑波大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$

出典:2016年筑波大学
投稿日:2024.05.22

<関連動画>

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#343「計算のクセが強すぎる」 防衛大学校2013 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
${}^{ \forall } t \in \Bbb R,$
$\sin\ 3t=f(\sin\ t)$
$\displaystyle \int_{0}^{1} \{f(x)\}^2\sqrt{ 1-x^2 }\ dx$

出典:2013年防衛大学校 入試問題
この動画を見る 

福田の数学〜千葉大学2022年理系第5問〜n個のサイコロの目の積の確率

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。n個のサイコロを同時に投げ、出た目の積をMとおく。
(1)Mが2でも3でも割り切れない確率を求めよ。
(2)Mが2で割り切れるが、3でも4でも割り切れない確率を求めよ。
(3)Mが4では割り切れるが、3では割り切れない確率を求めよ。

2022千葉大学理系過去問
この動画を見る 

整数問題 千葉大(医)類題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$k,n$を
$k^2=3^n+360$
全て求めよ。

千葉大(医)過去問
この動画を見る 
PAGE TOP