大学入試問題#481「個人的には複雑な7手詰め【5分で2段】」 明治大学(2022) #定積分 - 質問解決D.B.(データベース)

大学入試問題#481「個人的には複雑な7手詰め【5分で2段】」 明治大学(2022) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\theta}{(1+\cos\theta)^2} d\theta$

出典:2022年明治大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\theta}{(1+\cos\theta)^2} d\theta$

出典:2022年明治大学 入試問題
投稿日:2023.03.19

<関連動画>

福田の数学〜青山学院大学2022年理工学部第4問〜部分積分と定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$ x \gt 0$を定義域とする関数f(x)が次の等式
$f(x)=\int_1^e\log(xt) f(t)dt+x$
を満たすとき、以下の問いに答えよ。
(1)$\int_1^e\log x dx$を求めよ。
(2)$\int_1^e(\log x)^2 dx$ を求めよ。
(3)$\int_1^ex\log x dx$を求めよ。
(4)$f(x)$を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

大学入試問題#135 横浜市立大学(2020) 定積分 個人的には難

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\displaystyle \frac{dx}{\sin^3x\ \cos\ x}$

出典:2020年横浜市立大学 入試問題
この動画を見る 

#千葉大学2024#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{2}{3}\pi} x^2\sin x$ $dx$

出典:2024年千葉大学
この動画を見る 

大学入試問題#70 鳥取大学医学部(2012) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$:実数
$0 \lt a \lt 2$
$\displaystyle \int_{a}^{x}f(x-t)f(t)dt=\cos(ax)-b$

(1)$a,b$の値を求めよ。
(2)$f(x)$を求めよ
(3)$f(x)$が最大値をとるときの$x$の値を求めよ。

出典:2012年鳥取大学医学部 入試問題
この動画を見る 

#大学への数学 学力コンテスト(3)「どこで技をかけにいくか・・・」 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sqrt{ \displaystyle \frac{x}{1+x} }(0 \leqq x \leqq 1)$
(1)
$f'(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin\ x-\sin^2x }\ dx$

(3)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin^3x-\sin^4x }\ dx$
この動画を見る 
PAGE TOP