2023高校入試数学解説60問目 整数問題 早大学院 訂正はコメント欄に - 質問解決D.B.(データベース)

2023高校入試数学解説60問目 整数問題 早大学院 訂正はコメント欄に

問題文全文(内容文):
$N=3n^2+72n+260$
Nと2023の差が最も小さくなるような自然数nは?

2023早稲田大学 高等学院
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=3n^2+72n+260$
Nと2023の差が最も小さくなるような自然数nは?

2023早稲田大学 高等学院
投稿日:2023.02.19

<関連動画>

5乗数を平方の和で

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=5^5,a \lt b$とする.
自然数(a,b)を3組例示せよ.
この動画を見る 

東工大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
$x<y<z$(自然数)

東京工業大学過去問題
$(ab-1)(bc-1)(ca-1)$がabcで割り切れる1<a<b<c(自然数)
a,b,cをすべて求めよ。
この動画を見る 

整数問題 2通りの解法で

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$ 自然数
$7^{2n-1}+9^{2n-1}+47^{2n-1}$
は63の倍数であることを示せ。
この動画を見る 

合同式 千葉大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.

(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.

2003千葉大過去問
この動画を見る 

頻出!「あれ」を利用して余りを求める!

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
21^2015を400で割ったときの余りを求めよ。
この動画を見る 
PAGE TOP