福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
投稿日:2022.03.17

<関連動画>

【高校数学】毎日積分31日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テストでも使える!?面積を求めるときの積分の公式についてまとめました!
この動画を見る 

微分法と積分法 4STEP数Ⅱ 419 微分と接線6【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの曲線y=x²+2,y=x²+ax+3の交点をPとする。Pにおけるそれぞれの曲線の接線が垂直であるとき,定数aの値を求めよ。
この動画を見る 

【数Ⅱ】三角関数:解が三角関数で表される2次方程式:p>0とする。xの方程式4x²+2(1-p)x-p=0の解が、sinθとcosθ(0≦θ<2π)であるとき、pとθの値を求めよう。

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
解が三角関数で表される2次方程式:p>0とする。xの方程式4x²+2(1-p)x-p=0の解が、sinθとcosθ(0≦θ<2π)であるとき、pとθの値を求めよう。
この動画を見る 

福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ t,\ pを実数とし、t \gt 0とする。xy平面において、原点Oを中心とし点A(1,t)\\
を通る円をC_1とする。また、点AにおけるC_1の接線をlとする。直線x=p\\
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。\\
(1)直線lの方程式をtを用いて表せ。\\
(2)pをtを用いて表せ。\\
(3)C_2とx軸の接点をMとし、C_2とy軸の交点をNとする。tが正の実数全体を動くとき、\\
三角形OMNの面積の最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。                          \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。         \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP