問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
投稿日:2019.06.07