【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
次の関数の逆関数を求めよ。
$\displaystyle y=\frac{x-2}{3x+1}$
チャプター:

0:00 問題&逆関数の解き方確認
0:31「x=」をつくる
1:59 xとyを入れかえる

単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求めよ。
$\displaystyle y=\frac{x-2}{3x+1}$
投稿日:2024.07.09

<関連動画>

福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る 

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 

極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \lim_{ x \to 1 } \dfrac{\sqrt x -1}{\sqrt[3]{x}-1}$,これを解け.
この動画を見る 

【17−9 自然対数の底と極限】を宇宙一わかりやすく「数学大学入試良問集」

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上の整数とする。
平面上に$n+2$個の点$O,P_1,P_2・・・P_n$があり、次の2つの条件を満たしている。
①$\angle P_{k-1}OP_k=\displaystyle \frac{\pi}{n}(1 \leqq k \leqq n),\angle OP_{k-1}P_k=\angle OP_0P_1(2 \leqq k \leqq n)$

②線分$OP_0$の長さは1、線分$OP_1$の長さは$1+\displaystyle \frac{1}{n}$である。

線分$P_{k-1}P_k$の長さを$a_k$とし、$s_n=\displaystyle \sum_{k=1}^n a_k$とおくとき、$\displaystyle \lim_{ n \to \infty }s_n$を求めよ。
この動画を見る 

大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$

出典:2009年電気通信大学 入試問題
この動画を見る 
PAGE TOP