【数Ⅲ】陰関数のグラフ【対称性を使って最低限の労力でグラフを描く】 - 質問解決D.B.(データベース)

【数Ⅲ】陰関数のグラフ【対称性を使って最低限の労力でグラフを描く】

問題文全文(内容文):
$ (1)y^2=x^2(4-x^2)のグラフを描け.$
$ (2)y^2=x^2(4-x^2)をyについて解け.$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)y^2=x^2(4-x^2)のグラフを描け.$
$ (2)y^2=x^2(4-x^2)をyについて解け.$
投稿日:2022.12.13

<関連動画>

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
この動画を見る 

【数Ⅲ-177(最終回)】速度と道のり②(平面運動編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり②・平面運動編)

ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は

$S=$ ①



平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第4問〜絶対値の付いた関数と領域における最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)をf(x)=$\frac{1}{2}$($x^2$-$x$-3|$x$|)で定める。以下に答えなさい。
(1)y=f(x)のグラフをかきなさい。
(2)曲線y=f(x)上の点A(-3, f(-3))を通り、点Aにおける接線に垂直な直線lの方程式はy=$\boxed{\ \ ニ\ \ }$である。また、曲線と直線lは2つの共有点をもつが点Aとは異なる共有点の座標は$\boxed{\ \ ヌ\ \ }$である。さらに、曲線y=f(x)と直線lで囲まれた図形の面積は$\boxed{\ \ ネ\ \ }$である。
(3)連立不等式y≧f(x), y≦f(-3)の表す領域をDとする。点(x,y)がこの領域Dを動くとき、x+yは(x,y)=$\boxed{\ \ ノ\ \ }$のとき最大値$\boxed{\ \ ハ\ \ }$をとり、
(x,y)=$\boxed{\ \ ヒ\ \ }$のうち最小値$\boxed{\ \ フ\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小10 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径rの球に外接する直円錐について
(1) 体積の最小値を求めよ
(2) 表面積の最小値を求めよ
この動画を見る 

岡山県教員採用試験:方程式の利用

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $n$は自然数とする.
$x^{n+1}-1=0$の解を
$1,a_1,a_2,・・・,a_n$とするとき,
$(1-a_1)\times (1-a_2)\times ・・・ \times (1-a_n)$
の値を求めよ.
この動画を見る 
PAGE TOP