大学入試問題#618「とりあえず置換積分かな」 福岡大学医学部(2016) #定積分 僚太さんの紹介 - 質問解決D.B.(データベース)

大学入試問題#618「とりあえず置換積分かな」 福岡大学医学部(2016) #定積分 僚太さんの紹介

問題文全文(内容文):
$\displaystyle \int_{1}^{\frac{5}{2}} (x-1)\sqrt{ -x^2+4x-3 }\ dx$

出典:2016年福岡大学医学部 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\frac{5}{2}} (x-1)\sqrt{ -x^2+4x-3 }\ dx$

出典:2016年福岡大学医学部 入試問題
投稿日:2023.10.12

<関連動画>

#高専_2#定積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (1-\sin^3x)\cos x$ $dx$
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
この動画を見る 

【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る 

大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ

出典:2011年青山県立大学中期 入試問題
この動画を見る 

大学入試問題#367「これは、たぶん一撃で倒せる」 横浜国立大学2012 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{2+\sin\ x}{1+\cos\ x}dx$

出典:2012年横浜国立大学 入試問題
この動画を見る 
PAGE TOP