お茶の水女子大 多項式の展開 - 質問解決D.B.(データベース)

お茶の水女子大 多項式の展開

問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ

出典:2000年お茶の水女子大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ

出典:2000年お茶の水女子大学 過去問
投稿日:2020.02.18

<関連動画>

小学生も解ける!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b + \angle c + \angle d + \angle e=?$
この動画を見る 

「二次関数の最大最小②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
この動画を見る 

2乗❌2乗❌2乗

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(x^2+4)^2(x+2)^2(x-2)^2=$
この動画を見る 

データの分析 欠けたデータの推測【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある8店舗での1kgあたりのみかんの価格である。ただし、aの値は0以上の整数である。
525 550 498 550 555 500 a (単位は円)
(1)aの値がわからないとき、このデータの中央値として何通りの値があり得るか。
(2)このデータの平均値が535円であるとき、このデータの中央値を求めよ。
この動画を見る 

【高校数学】  数Ⅰ-45  2次関数の最大・最小④ ・ 動く軸編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
aは定数とする。関数$y=x^2-2ax+a(0 \leqq x \leqq 2)$の最大値、最小値を、次の各場合について求めよう。
①$a \leqq 0$
②$0 \lt a \lt 1$
③$a=1$
④$1 \lt a \lt 2$
⑤$a \geqq 2$
この動画を見る 
PAGE TOP