10東京都教員採用試験(数学:1-(1) 解と係数の関係) - 質問解決D.B.(データベース)

10東京都教員採用試験(数学:1-(1) 解と係数の関係)

問題文全文(内容文):
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
投稿日:2020.10.27

<関連動画>

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

2021東海大(医)複素数の回転移動

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$

2021東海大(医)
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(1)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2-2mx-m+2=0$ が次のような解をもつとき、定数$m$の
値の範囲を求めよ。

(1)異なる2つの正の解
(2)異なる2つの負の解
(3)異符号の解
(4)2つの0以上の解
(5)2つの0以下の解
この動画を見る 

長崎大 3乗根 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
(1)$x^3=1$を解け
(2)$α=m+\sqrt7ni$とすると、$α^3=225+2\sqrt7i$が成り立つ。整数m,nを求めよ。
(3)$β^3=225+2\sqrt7i$を満たす複素数βをすべて求めよ。
この動画を見る 

室蘭工業大2020複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$z^2=2+\sqrt5 i$を解け.
②①の2つの解を$\alpha,\beta$とする.
複素平面上の$\alpha,\beta$を$A,B$とし$\triangle ABC$が正三角形になる点$C$の値
$\delta$を求めよ.

2020室蘭工業大過去問
この動画を見る 
PAGE TOP