福田の数学〜慶應義塾大学2023年看護医療学部第1問(2)〜同じものを含む順列 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2023年看護医療学部第1問(2)〜同じものを含む順列

問題文全文(内容文):
$\Large\boxed{1}$ (2)k a n g o g a k u の9文字すべてを並べてできる文字列の種類は全部で$\boxed{\ \ ウ\ \ }$通りであり、このうち子音と母音が交互に並ぶものは$\boxed{\ \ エ\ \ }$通りである。

2023慶應義塾大学看護医療学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)k a n g o g a k u の9文字すべてを並べてできる文字列の種類は全部で$\boxed{\ \ ウ\ \ }$通りであり、このうち子音と母音が交互に並ぶものは$\boxed{\ \ エ\ \ }$通りである。

2023慶應義塾大学看護医療学部過去問
投稿日:2023.05.07

<関連動画>

【高校数学】確率の基本性質~和事象の確率~ 2-3【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から9までの番号をつけたカードが各数字3枚ずつ計27枚ある。
このカードから2枚を取り出すとき、2枚が同じ数字か2枚の数字の和が5以下である確率を求めよ。
この動画を見る 

【数A】【場合の数】硬貨で支払える金額 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の場合硬貨の一部または全部を使ってちょうど支払うことができる金額は何通りあるか
(1)10円硬貨4枚、50円硬貨1枚、100円硬貨3枚
(2)10円硬貨2枚、50円硬貨3枚、100円硬貨3枚
(3)10円硬貨7枚、50円硬貨1枚、100円硬貨3枚

10円、50円、100円の3種類の硬貨を使ってちょうど250円支払うには何通りの支払いの方法があるか
ただし、どの硬貨も十分な枚数があり、使わない硬貨があっても良いものとする
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第4問〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
アルファベットのAと書かれた玉が1個、Dと書かれた玉が1個、Hと書かれ
た玉が1個、Iと書かれた玉が1個、Kと書かれた玉が2個、Oと書かれた玉が
2個ある。これら8個の玉を円形に並べる。
(1) 時計回りにHOKKAIDOと並ぶ確率を求めよ。
(2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の3文字
(玉は4個)のことである。
(3) 隣り合う子音が存在するとき、それがKKだけである条件つき確率を求めよ。

2022北海道大学理系過去問
この動画を見る 

2個のサイコロだけど難問!! 日大三 (西東京)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP