【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。 - 質問解決D.B.(データベース)

【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。

問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
チャプター:

0:00 オープニング 
0:54 2直線のなす角と加法定理の基本的な考え方 
3:24 2直線が見えない? 
3:56 できることはとりあえずやってみる! 
5:22 2直線が出てきたので、基本的な考え方へ 
6:14 まとめ 
7:39 エンディング

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
投稿日:2021.10.20

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

三角関数の基礎問題です!2通りで解説【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$\angle A=60°$であるとする。

(1)$sinB+sinC$の取り得る値の範囲を求めよ。

(2)$sinBsinC$の取り得る値の範囲を求めよ。

一橋大過去問
この動画を見る 

三角関数の合成とか大丈夫ですか?【数学 入試問題】【慶應義塾大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$y=2cos^2\theta-\sqrt3 cos\theta sin\theta-sin^2\theta (0≦\theta≦\pi)$
の最大値とその時の$\theta$を求めよ。

慶應義塾大過去問
この動画を見る 

福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。

(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
この動画を見る 

九州大学 三倍角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る 
PAGE TOP