福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}
投稿日:2022.04.10

<関連動画>

複素数平面の基本⑥1のn乗根をド・モアブルの定理で考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$z=\cos \frac{ 2 }{ 5 }\pi+i\sin \frac{ 2 }{ 5 }\pi$のとき、$z^4+z^3+z^2+z+1$の値を求めよ
この動画を見る 

虚数の3乗根 島根大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3=i$
この動画を見る 

札幌医科大 2024 複素数の方程式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ
この動画を見る 

複素数平面の基本④複素数の極形式の単位円を用いた考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
cos(2/3)π-isin(2/3)π
この動画を見る 

複素数平面の基本⑤複素数の積・商の考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
cos(2/3)π-isin(2/3)π
この動画を見る 
PAGE TOP