【中学数学】平方根・ルートの計算演習~乗法公式1~ 2-9【中3数学】 - 質問解決D.B.(データベース)

【中学数学】平方根・ルートの計算演習~乗法公式1~ 2-9【中3数学】

問題文全文(内容文):
1⃣
$(\sqrt{5}+3)(\sqrt{5}-2)$

2⃣
$(\sqrt{2}+3)(\sqrt{2}-1)$

3⃣
$(3\sqrt{5}-3)(6+3\sqrt{5})$
チャプター:

00:00 はじまり

00:14 問題解説(1)

01:55 問題解説(2)

02:42 問題解説(3)

04:34 まとめ

04:57 問題と答えhttps://youtu.be/BXx6vQQHJIQ?si=G-TnBEba3i_H0vvA

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{5}+3)(\sqrt{5}-2)$

2⃣
$(\sqrt{2}+3)(\sqrt{2}-1)$

3⃣
$(3\sqrt{5}-3)(6+3\sqrt{5})$
投稿日:2021.07.04

<関連動画>

簡単すぎる京大の入試問題!解けますか?【数学】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。

京都大過去問
この動画を見る 

【高校数学】  数Ⅰ-82  三角比⑦

アイキャッチ画像
単元: #数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式のとりうる値の範囲を求めよう。

①$\cos \theta+2(0° \leqq \theta \leqq 180°)$

②$3\sin \theta-1(0° \leqq \theta \leqq 180°)$

③$\sqrt{ 2 }\sin \theta+3(45° \leqq \theta \leqq 120°)$

④$\sqrt{ 3 }\tan \theta-3(30° \leqq \theta \lt 60°)$
この動画を見る 

【単位円はこう使う!】三角不等式での単位円の使い方を4ステップで解説!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角不等式での単位円の使い方について解説します。
この動画を見る 

平方根:代表的な無理数の暗記法~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根:代表的な無理数の暗記法~全国入試問題解法

$\sqrt{ 2 } = 1.41421356$ 一夜一夜に人見ごろ

$\sqrt{ 3 } = 1.7320508$ ...人なみにおごれや

$\sqrt{ 5 } = 2.2360679$ 富士山ろくオウム鳴く

$\sqrt{ 6 } = 2 2.4494897$... 二夜シクシク

$\sqrt{ 7 } = 2 2.6457513$... 変に虫いないさ

$\sqrt{ 8 } = 2 2.828427$… ニヤニヤ呼ぶな

$\sqrt{ 10 } = 3 3,1622776.$……… 人丸は三色に並ぶや

この動画を見る 

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
この動画を見る 
PAGE TOP