【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算 - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算

問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)3+4i (2)(12i)2 (3)2+3i5i
2点A(α),B(β)間の距離を求めよ
(1)α=3+4i,β=7+5i (2)α=3i,β=5
チャプター:

0:00 オープニング
0:04 絶対値の計算
2:48 2点間の距離
3:48 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)3+4i (2)(12i)2 (3)2+3i5i
2点A(α),B(β)間の距離を求めよ
(1)α=3+4i,β=7+5i (2)α=3i,β=5
投稿日:2023.03.03

<関連動画>

福岡教育大 複素平面の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
z=a+bi(a>0,b>0z2+1z2=1を満たす.

(1)zを極形式で表せ(0<θ<2π)

(2)z100+1z100の値を求めよ.

(3)z,z2,z100+1z100の三点でできる三角形の面積を求めよ.

福岡教育大過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、z¯はzと共役な複素数とし、
iを虚数単位とする。
zz¯=4 ①     |z|=|z3+i| 

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このときwnが負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
この動画を見る 

虚数単位の入った漸化式 学習院大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019学習院大学過去問題
Z1=1
Zn+1=iZn+2
(1)Z2019
(2)Znが通る円の中心と半径
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,c,d.\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
f(z)=z2n+zn+1

z2+z+1で割ったあまり
z2z+1で割ったあまり

を求めよ.nは自然数である.

一橋大学過去問
この動画を見る 
PAGE TOP preload imagepreload image