問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
単元:
#平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
投稿日:2018.04.21